Modular Arithmetic, Grades 8 & 9

Blacksburg Math Circle

Warm-up Problem.

Let $a_1 = 7$ and $a_2 = 11$. We fix the divisor to be d = 5 in this problem.

- (a) Compute the remainder r_1 of a_1 . Compute the remainder r_2 of a_2 as well.
- (b) Is the remainder of $a_1 + a_2$ equal to $r_1 + r_2$?
- (c) For other choices of a_1 and a_2 , do you think the remainder of $a_1 + a_2$ is always equal to $r_1 + r_2$? If not, can you find a relation between $a_1 + a_2$ and $r_1 + r_2$?
- (d) Is the remainder of a_1a_2 equal to r_1r_2 ?
- (e) For other choices of a_1 and a_2 , do you think the remainder of a_1a_2 is always equal to r_1r_2 ? If not, can you find a relation between a_1a_2 and r_1r_2 ?

As you can see above, a *dividend* a and its *remainder* r when divided by a *divisor* d behave in the same way when you carry out basic arithmetic operations like addition and multiplication (subtraction is also fine) followed by taking a remainder, which is called "modular arithmetic." Modular arithmetic may seem to be unusual, but it turns out that people use it on a daily basis. (Do you see how? Hint: d = 12.)

The fact that a = 7 and r = 2 behave in the same way in modular arithmetic with d = 5 is denoted as $7 \equiv 2 \pmod{5}$ and pronounced as "7 is congruent to 2 modulo 5" where d = 5 is called a *modulus*. In general, we write

$a \equiv b \pmod{d}$

if a-b is divisible by d (i.e. a-b is an integer multiple of d). You are not restricted to have a remainder on the right or use positive numbers. The statement $7 \equiv -3 \pmod{5}$ is true because 7 - (-3) = 10 is divisible by 5.

In the following problems, you will discover some properties and uses of modular arithmetic. Enjoy!

Problem 1.

What is the remainder of $2^{50} \pmod{5}$? How about $3^{2016} \pmod{7}$?

Problem 2.

Find a positive integer n such that $x \equiv 2 \pmod{3}$ and $x \equiv 3 \pmod{4}$. Can you list all such positive integers less than 50?

Problem 3.

Find a positive integer n such that $x \equiv 1 \pmod{4}$, $x \equiv 3 \pmod{5}$, and $x \equiv 3 \pmod{7}$.

Problem 4.

Let $d_1 = 3$ and $d_2 = 5$. Let n be an integer that has the same remainder r mod d_1 and d_2 .

- (a) For n = 16 (what is r?), compute the remainder of $n \pmod{d_1d_2}$.
- (b) For n = 32 (what is r?), compute the remainder of $n \pmod{d_1d_2}$.

- (c) Based on your observations, formulate a conjecture.
- (d) Prove your conjecture.
- (e) Do you think your conjecture holds for other choices of d_1 and d_2 (e.g. $d_1 = 4$ and $d_2 = 6$)? Can you identify a condition on d_1 and d_2 for your conjecture to be true?

Problem 5.

Let n be an integer that is not divisible by 3.

- (a) For n = 4, compute the remainder of $n^2 1 \pmod{3}$.
- (b) For n = 10, compute the remainder of $n^2 1 \pmod{3}$.
- (c) Try a few more examples. Based on your observations, formulate a conjecture.
- (d) Prove your conjecture.

Problem 6.

Let n be an odd integer.

- (a) For n = 3, compute the remainder of $n^2 \pmod{8}$.
- (b) For n = 13, compute the remainder of $n^2 \pmod{8}$.
- (c) Try a few more examples. Based on your observations, formulate a conjecture.
- (d) Prove your conjecture.

*Problem 7.

Let n be an odd integer.

- (a) For n = 3, compute the remainder of $n(n+2) \pmod{16}$.
- (b) For n = 13, compute the remainder of $n(n+2) \pmod{16}$.
- (c) Try a few more examples. Based on your observations, formulate a conjecture.
- (d) Prove your conjecture.

Problem 8.

Let n be an odd integer.

- (a) For n = 5, compute the remainder of $1 + 2 + \cdots + n \pmod{n}$.
- (b) For n = 7, compute the remainder of $1 + 2 + \cdots + n \pmod{n}$.
- (c) What is your conjecture?
- (d) Prove your conjecture.

Problem 9.

Let n be an even integer.

- (a) For n = 4, compute the remainder of $1 + 2 + \cdots + n \pmod{n}$.
- (b) For n = 6, compute the remainder of $1 + 2 + \cdots + n \pmod{n}$.
- (c) What is your conjecture?
- (d) Prove your conjecture.